THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010I/J University Mathematics 2015-2016

Revision for Midterm Examination

1. Let $\left\{a_{n}\right\}$ be a sequence of real numbers defined by

$$
a_{1}=\sqrt{2} \quad \text { and } \quad a_{n+1}=\sqrt{2+a_{n}} \text { for } n \geq 1
$$

(a) Show that $\left\{a_{n}\right\}$ is an increasing sequence.
(b) Show that $\left\{a_{n}\right\}$ is convergent and hence find the $\lim _{n \rightarrow \infty} a_{n}$.
2. Let $\left\{x_{n}\right\}$ be a sequence of real numbers defined by

$$
x_{1}=3 \quad \text { and } \quad x_{n+1}=\frac{x_{n}^{2}+4}{2 x_{n}} \text { for } n \geq 1 .
$$

(a) Prove that $0 \leq x_{n}-2 \leq \frac{1}{2^{n-1}}$ for all natural numbers n.
(b) Prove that $\left\{x_{n}\right\}$ converges and find $\lim _{n \rightarrow \infty} x_{n}$.
3. Evaluate the following limits.
(a) $\lim _{x \rightarrow+\infty} \frac{x}{1+\sqrt[3]{x^{3}+1}}$
(b) $\lim _{x \rightarrow+\infty} \frac{x+\sin x}{x-\cos x}$
(c) $\lim _{x \rightarrow 0} \frac{\tan 3 x}{4 x}$
4. Find the derivative of the following functions.
(a) $f(x)=e^{\cos 3 x}$
(b) $f(x)=x^{\sin x}$, for $x>0$
(c) $f(x)=\sin ^{-1}\left(\sin ^{2} x\right)$
(d) $f(x)=\frac{\left(x^{2}+1\right)^{3}}{e^{3 x}(\sqrt{x}+3)^{4}}$
5. Show that $\lim _{x \rightarrow 0} \sin \left(e^{\left(1 / x^{2}\right)}\right)$ does not exist.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that

- $f(x+y)=f(x)+f(y)+2 x y(x+y)$ for all real numbers x and y;
- $f^{\prime}(0)=1$.

Show that $f^{\prime}(x)=1+2 x^{2}$ for all real numbers x.
7. Let $a>0$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)=\left\{\begin{array}{ccc}
\frac{1}{a}\left(x^{2}-a^{2}\right) & \text { if } & 0<x<a \\
0 & \text { if } & x=a \\
\frac{a}{x^{2}}\left(x^{2}-a^{2}\right) & \text { if } & x>a
\end{array}\right.
$$

(a) Prove that $f(x)$ is differentiable at $x=a$ and find $f^{\prime}(a)$.
(b) Is $f^{\prime}(x)$ continuous at $x=a$?
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that

- $f(x+y)=f(x) f(y)$ for all real numbers x and y;
- $1+x \leq f(x) \leq 1+x f(x)$ for all real numbers x.
(a) Show that
(i) $f(0)=1$,
(ii) $f(x)>1$ for $x>0$,
(iii) $f(x)>0$ for all real number x.

Hence, deduce that $f(x)$ is strictly increasing, that means if $a>b$, then $f(a)>f(b)$.
(b) Show that if $h<1$, we have

$$
1+h \leq f(h) \leq \frac{1}{1-h}
$$

Hence, show that $f(x)$ is continuous at $x=0$.
(c) Show that $f(x)$ is differentiable at $x=0$ and find $f^{\prime}(0)$.

